

Maximal Single-Plate Polarization

Let (A, m) be an infinite compact metric space. $K : A \times A \rightarrow (-\infty, \infty]$, symmetric and lower semi-continuous. $\omega_N := (x_1, \dots, x_N) \in A^N$

Definition: Polarization Constants

$$P_{\mathcal{K},\mathcal{A}}(\omega_N) := \min_{x \in \mathcal{A}} \sum_{i=1}^N \mathcal{K}(x,x_i).$$

The single-plate polarization (Chebyshev) problem: Find

$$\mathcal{P}_{\mathcal{K}}(\mathcal{A}, \mathcal{N}) := \max_{\omega_{\mathcal{N}} \in \mathcal{A}^{\mathcal{N}}} \mathcal{P}_{\mathcal{K}, \mathcal{A}}(\omega_{\mathcal{N}}) = \max_{\omega_{\mathcal{N}} \in \mathcal{A}^{\mathcal{N}}} \min_{x \in \mathcal{A}} \sum_{i=1}^{\mathcal{N}} \mathcal{K}(x, x_{i})$$

Maximal Single-Plate Polarization

Let (A, m) be an infinite compact metric space. $K : A \times A \rightarrow (-\infty, \infty]$, symmetric and lower semi-continuous. $\omega_N := (x_1, \dots, x_N) \in A^N$

Definition: Polarization Constants

$$P_{\mathcal{K},\mathcal{A}}(\omega_N) := \min_{x \in \mathcal{A}} \sum_{i=1}^N \mathcal{K}(x,x_i).$$

The single-plate polarization (Chebyshev) problem: Find

$$\mathcal{P}_{\mathcal{K}}(\mathcal{A},\mathcal{N}) := \max_{\omega_{\mathcal{N}}\in\mathcal{A}^{\mathcal{N}}} \mathcal{P}_{\mathcal{K},\mathcal{A}}(\omega_{\mathcal{N}}) = \max_{\omega_{\mathcal{N}}\in\mathcal{A}^{\mathcal{N}}} \min_{x\in\mathcal{A}} \sum_{i=1}^{\mathcal{N}} \mathcal{K}(x,x_{i})$$

N-point configurations $\omega_N^* = (x_1^*, \dots, x_N^*)$ satisfying

$$P_{\mathcal{K},\mathcal{A}}(\omega_{\mathcal{N}}^{*})=\mathcal{P}_{\mathcal{K}}(\mathcal{A},\mathcal{N})$$

are called optimal or maximal K-polarization configurations.

Example: Why "Chebyshev" ?

For

$$egin{aligned} \mathcal{K}(x,y) &= \log rac{1}{|x-y|}, \ \mathcal{A} &= [-1,1] \subset \mathbb{R}, \end{aligned}$$

$$\mathcal{P}_{\mathcal{K}}(\mathcal{A},\mathcal{N}) = \log \frac{1}{\min_{\rho(x)=x^{N}+\cdots}\max_{x\in[-1,1]}|\rho(x)|},$$

where p(x) has all its zeros on [-1, 1].

$$\mathcal{P}_{\mathcal{K}}(A, N) = \log \frac{1}{||T_N(x)||_{[-1,1]}} = (N-1)\log 2,$$

 $T_N(x) = 2^{1-N} \cos(N\theta)$, $x = \cos \theta$, is the monic Chebyshev polynomial of degree *N* of the first kind. So optimal polarization points are the zeros of $T_N(x)$.

Comparison with Discrete Minimal Energy

K-energy of $\omega_N = (x_1, \ldots, x_N) \in A^N$ is

$$egin{aligned} \mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) &:= \sum_{i=1}^{\mathcal{N}} \sum_{\substack{j=1\ j
eq i}}^{\mathcal{N}} \mathcal{K}(x_i, x_j) = \sum_{i
eq j} \mathcal{K}(x_i, x_j) \end{aligned}$$

Comparison with Discrete Minimal Energy

K-energy of $\omega_N = (x_1, \ldots, x_N) \in A^N$ is

$$\mathsf{E}_{\mathsf{K}}(\omega_{\mathsf{N}}) := \sum_{i=1}^{\mathsf{N}} \sum_{\substack{j=1\ j
eq i}}^{\mathsf{N}} \mathsf{K}(x_i, x_j) = \sum_{i
eq j} \mathsf{K}(x_i, x_j)$$

Minimal *N*-point *K*-energy of the set *A* is

 $\mathcal{E}_{\mathcal{K}}(\mathcal{A},\mathcal{N}) := \inf\{\mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) : \omega_{\mathcal{N}} \in \mathcal{A}^{\mathcal{N}}\}$

If $E_{\mathcal{K}}(\omega_N^*) = \mathcal{E}_{\mathcal{K}}(A, N)$, then ω_N^* is called *N*-point *K*-equilibrium configuration for *A* or a set of optimal *K*-energy points.

Comparison with Discrete Minimal Energy

K-energy of $\omega_N = (x_1, \ldots, x_N) \in A^N$ is

$$\mathsf{E}_{\mathsf{K}}(\omega_{\mathsf{N}}) := \sum_{i=1}^{\mathsf{N}} \sum_{\substack{j=1\ j
eq i}}^{\mathsf{N}} \mathsf{K}(x_i, x_j) = \sum_{i
eq j} \mathsf{K}(x_i, x_j)$$

Minimal *N*-point *K*-energy of the set *A* is

 $\mathcal{E}_{\mathcal{K}}(\mathcal{A},\mathcal{N}) := \inf\{\mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) : \omega_{\mathcal{N}} \in \mathcal{A}^{\mathcal{N}}\}\$

If $E_{\mathcal{K}}(\omega_N^*) = \mathcal{E}_{\mathcal{K}}(A, N)$, then ω_N^* is called *N*-point *K*-equilibrium configuration for *A* or a set of optimal *K*-energy points.

Simple Observation

For every $N \ge 2$,

$$\mathcal{P}_{\mathcal{K}}(\mathcal{A}, \mathcal{N}) \geq \frac{\mathcal{E}_{\mathcal{K}}(\mathcal{A}, \mathcal{N})}{\mathcal{N}-1}$$

Example: $\mathbb{S}^{p} = \{x \in \mathbb{R}^{p+1} : ||x|| = 1\}$

Proposition (Polarization on \mathbb{S}^{p})

Let $2 \leq N \leq p + 1$.

Assume $f : [0,4] \rightarrow (-\infty,\infty]$ satisfies $f((0,4]) \subset (-\infty,\infty)$, with f **convex** on (0,4] and is **strictly decreasing** on [0,4].

For $K(\mathbf{x}, \mathbf{y}) = f(|\mathbf{x} - \mathbf{y}|^2)$,

we have that any configuration $\omega_N = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ on \mathbb{S}^p such that $\sum_{i=1}^{N} \mathbf{x}_i = \mathbf{0}$ is optimal for the maximal *K*-polarization problem on \mathbb{S}^p . Furthermore, $\mathcal{P}_K(\mathbb{S}^p, N) = Nf(2)$.

Example: $\mathbb{S}^{p} = \{x \in \mathbb{R}^{p+1} : ||x|| = 1\}$

Proposition (Polarization on \mathbb{S}^{p})

Let $2 \leq N \leq p + 1$.

Assume $f : [0,4] \rightarrow (-\infty,\infty]$ satisfies $f((0,4]) \subset (-\infty,\infty)$, with f **convex** on (0,4] and is **strictly decreasing** on [0,4].

For $K(\mathbf{x}, \mathbf{y}) = f(|\mathbf{x} - \mathbf{y}|^2)$,

we have that any configuration $\omega_N = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ on \mathbb{S}^p such that $\sum_{i=1}^{N} \mathbf{x}_i = \mathbf{0}$ is optimal for the maximal *K*-polarization problem on \mathbb{S}^p . Furthermore, $\mathcal{P}_K(\mathbb{S}^p, N) = Nf(2)$.

Result holds for Riesz *s*-kernel $K_s(\mathbf{x}, \mathbf{y})$ for s > 0 and $s = \log$.

For \mathbb{S}^2 we know max *s*-polarization configurations for N = 1, 2, 3. Also for N = 4, [Y. Su], max polarization points are vertices of inscribed tetrahedron.

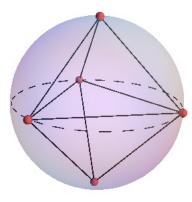
Maximal Riesz *s*-Polarization for N = 5 on \mathbb{S}^2 ?

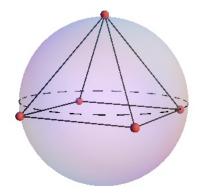
VANDERBILT UNIVERSITY

Maximal Riesz *s*-Polarization for N = 5 on \mathbb{S}^2 ?

square-base pyramid

bipyramid

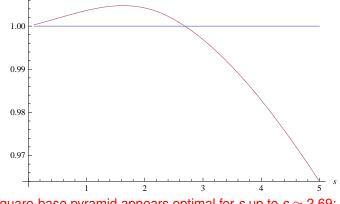




~ ~ ~

Maximal Riesz s-Polarization for N = 5 on \mathbb{S}^2

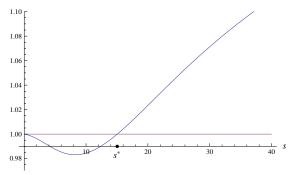
Ratio of s-polar of optimal sq-base pyramid to s-polar of bipyramid Ratio of polarizations



Square-base pyramid appears optimal for *s* up to $s \approx 2.69$; thereafter, bipyramid appears optimal.

Compare with Minimal Riesz *s*-Energy for N = 5 on \mathbb{S}^2

Ratio of s-energy of bipyramid to s-energy of optimal sq-base pyramid

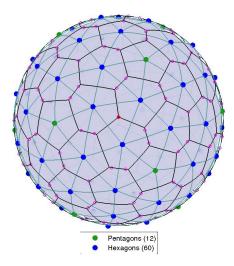


Melnyk et al (1977) Bipyramid appears optimal for $0 < s < s^*$ where $s^* \approx 15.04808$.

Recently proved by R. Schwartz (over 150 pages + computer assist). Open problem for $s > s^* + \epsilon$

500

Max Polarization for N = 72 and s = 3



Example: Unit Ball $\mathcal{B}^{p} \subset \mathbb{R}^{p}$

For the Riesz *s*-kernel $K_s(x, y) = 1/|x - y|^s$,

if $p \ge 3$ and -2 < s < p - 2, $s \ne 0$, then

Optimal N-point s-Polarization configurations all lie at the center of \mathcal{B}^p

Optimal *N*-point *s*-Energy configurations all lie on $\partial B^p = \mathbb{S}^{p-1}$

ASYMPTOTICS

Connection to Best-Covering as $s \to \infty$

Covering radius of $\omega_N \in A^N$ is given by

$$\rho(\omega_N; A) := \max_{y \in A} \min_{x \in \omega_N} |y - x|.$$

N-point covering radius of A :

 $\rho_{N}(\boldsymbol{A}) = \inf\{\rho(\omega_{N}; \boldsymbol{A}) : \omega_{N} \in \boldsymbol{A}^{N}\}$

Proposition

For each fixed N, the maximal Riesz s-polarization satisfies

$$\lim_{s\to\infty}\mathcal{P}_s(A,N)^{1/s}=\frac{1}{\rho_N(A)}.$$

Furthermore, every cluster point as $s \to \infty$ of optimal *N*-point *s*-polarization configurations (ω_N^s) is an *N*-point best-covering configuration.

Asymptotics as $N \to \infty$

A compact, infinite $\mathcal{M}(A)$ the set of probability measures supported on A. $K: A \times A \rightarrow (-\infty, +\infty]$ symmetric and l.s.c.

Proposition (Polarization) (Ohtsuka)

$$\lim_{N\to\infty}\frac{\mathcal{P}_{\mathcal{K}}(A,N)}{N} = \sup_{\mu\in\mathcal{M}(A)}\inf_{x\in A}\int \mathcal{K}(x,y)\,d\mu(y) =: T_{\mathcal{K}}(A)$$

Asymptotics as $N \to \infty$

A compact, infinite $\mathcal{M}(A)$ the set of probability measures supported on A. $\mathcal{K}: A \times A \rightarrow (-\infty, +\infty]$ symmetric and l.s.c.

Proposition (Polarization) (Ohtsuka)

$$\lim_{N\to\infty}\frac{\mathcal{P}_{\mathcal{K}}(\mathcal{A},N)}{N} = \sup_{\mu\in\mathcal{M}(\mathcal{A})}\inf_{x\in\mathcal{A}}\int \mathcal{K}(x,y)\,d\mu(y) =: T_{\mathcal{K}}(\mathcal{A})$$

Proposition(Energy)

$$\lim_{N\to\infty}\frac{\mathcal{E}_{\mathcal{K}}(A,N)}{N^2}=\inf_{\mu\in\mathcal{M}(A)}\iint_{A\times A}\mathcal{K}(x,y)\,d\mu(x)d\mu(y)=:W_{A}(\mathcal{K}).$$

 $T_{\mathcal{K}}(A) \geq W_{\mathcal{K}}(A)$

Non-integrable Riesz Kernels: $s > d = \dim(A)$

Polarization"Poppy-Seed Bagel" Theorem (s>d) (BHRS 2018)

Let $A \subset \mathbb{R}^d$ be an infinite compact set of positive Lebesgue \mathcal{L}_d -measure whose boundary has measure zero. If s > d, then

$$\lim_{N\to\infty}\frac{\mathcal{P}_{\boldsymbol{s}}(\boldsymbol{A},\boldsymbol{N})}{\boldsymbol{N}^{\boldsymbol{s}/\boldsymbol{d}}}=\frac{\sigma_{\boldsymbol{s},\boldsymbol{d}}}{\mathcal{L}_{\boldsymbol{d}}(\boldsymbol{A})^{\boldsymbol{s}/\boldsymbol{d}}}.$$

Furthermore, every asymptotically maximizing *s*-polarization sequence of *N*-point configurations on *A* is asymptotically uniformly distributed with respect to normalized \mathcal{L}_d -measure on *A*.

 $\sigma_{s,1} = 2\zeta(s, 1/2) = 2\zeta(s)(2^s - 1)$, for $d \ge 2$, constant $\sigma_{s,d}$ unknown.

Poppy-Seed Theorem for Embedded Sets

Same conclusions hold for any embedded *d*-dimensional compact C^1 -smooth manifold $A \subset \mathbb{R}^p$, p > d, with $\mathcal{H}_d(\partial A) = 0$.

Two Special Classes of Integrable Kernels

Theorem(Simanek)

(i) $A \subset \mathbb{R}^t$ compact; K(x, y) = f(|x - y|), where $f \ge 0$ is l.s.c;

ANDERBILT

(ii) *K*-energy continuous equilibrium measure μ_A^e is unique ;

- (iii) $\operatorname{supp}(\mu_A^e) = A;$
- (iv) $U^e(x) := \int_A K(x, y) d\mu^e_A(y) = W_K(A)$ everywhere on A.

Then $T_{K}(A) = W_{K}(A)$, and for any sequence $\{\omega_{N}^{*}\}$ of optimal *K*-polarization configurations, the associated normalizing counting measures converge weak* to μ_{A}^{e} . Furthermore, $\mu_{A}^{e} = \mu_{A}^{p}$.

Two Special Classes of Integrable Kernels

Theorem(Simanek)

(i) $A \subset \mathbb{R}^t$ compact; K(x, y) = f(|x - y|), where $f \ge 0$ is l.s.c;

(ii) K-energy continuous equilibrium measure $\mu^{\rm e}_{\rm A}$ is unique ;

- (iii) $\operatorname{supp}(\mu_A^e) = A;$
- (iv) $U^e(x) := \int_A K(x, y) d\mu^e_A(y) = W_K(A)$ everywhere on A.

Then $T_{\mathcal{K}}(A) = W_{\mathcal{K}}(A)$, and for any sequence $\{\omega_N^*\}$ of optimal *K*-polarization configurations, the associated normalizing counting measures converge weak* to μ_A^e . Furthermore, $\mu_A^e = \mu_A^p$.

Theorem (Reznikov, S, Vlasiuk)

- (i) A is d-regular;
- (ii) f is d-Riesz like (e.g., t^{-s} for 0 < s < d).

Then any weak* limit measure of normalized counting measures for optimal K-polarization configurations is an optimal measure for the continuous K-polarization problem.